We're committed to open and accessible science. We try to publish in open access journals whenever possible, but sometimes it's not feasible. If you'd like to access one of our papers but don't have access, please reach out.

Forthcoming

Wutich, A., Thomson, P., Jepson, W., Stoler, J., Cooperman, A., Doss-Gollin, J., Jantrania, A., Mayer, A., Nelson-Nuñez, J., Walker, S. W. & Westerhoff, P. MAD Water: Integrating Modular, Adaptive, and Decentralized Approaches for Water Security in the Climate Change Era. (2022).

Centralized water infrastructure has, over the last century, brought safe and reliable drinking water to much of the world. But climate change, combined with aging and underfunding, is increasingly testing the limits of—and reversing gains made by—these large-scale water systems. To address these growing strains and gaps, we must assess and advance alternatives to centralized water provision. The water literature is rife with examples of systems that are neither centralized nor networked, but still meet water needs of local communities in important ways, including: informal and hybrid water systems, decentralized water provision, community-based water management, small drinking water systems, green infrastructures for water and wastewater management, point-of-use filtration, small-scale water vendors, and packaged water. Our work builds on these literatures by proposing a convergence approach that can integrate and explore the benefits and challenges of modular, adaptive, and decentralized (“MAD”) water provision, often foregrounding important advances in engineering technology. We further provide frameworks to evaluate justice, economic feasibility, good governance, human health, and environmental sustainability as key parameters of MAD water system performance.

                            @online{wutich_madwater:2022,
  title = {{{MAD}} Water: Integrating Modular, Adaptive, and Decentralized Approaches for Water Security in the Climate Change Era},
  author = {Wutich, Amber and Thomson, Patrick and Jepson, Wendy and Stoler, Justin and Cooperman, Alicia and Doss-Gollin, James and Jantrania, Anish and Mayer, Alex and Nelson-Nu\~nez, Jami and Walker, Shane W. and Westerhoff, Paul},
  date = {2022-08-10},
  pubstate = {preprint}
}

                            

Journal articles

Amonkar, Y., Doss-Gollin, J. & Lall, U. Compound Climate Risk: Diagnosing Clustered Regional Flooding at Inter-Annual and Longer Time Scales. Hydrology 67 (2023).
Read Online

The potential for extreme climate events to cluster in space and time has driven increased interest in understanding and predicting compound climate risks. Through a case study on floods in the Ohio River Basin, we demonstrated that low-frequency climate variability could drive spatial and temporal clustering of the risk of regional climate extremes. Long records of annual maximum streamflow from 24 USGS gauges were used to explore the regional spatiotemporal patterns of flooding and their associated large-scale climate modes. We found that the dominant time scales of flood risk in this basin were in the interannual (6–7 years), decadal (11–13 years), and secular bands and that different sub-regions within the Ohio River Basin responded differently to large-scale forcing. We showed that the leading modes of streamflow variability were associated with ENSO and secular trends. The low-frequency climate modes translated into epochs of increased and decreased flood risk with multiple extreme floods or the absence of extreme floods, thus informing the nature of compound climate-induced flood risk. A notable finding is that the secular trend was associated with an east-to-west shift in the flood incidence and the associated storm track. This is consistent with some expectations of climate change projections.

                            @article{amonkar_compound:2023,
  title = {Compound Climate Risk: Diagnosing Clustered Regional Flooding at Inter-Annual and Longer Time Scales},
  author = {Amonkar, Yash and Doss-Gollin, James and Lall, Upmanu},
  date = {2023-03-16},
  journaltitle = {Hydrology},
  volume = {10},
  number = {3},
  pages = {67},
  publisher = {{Multidisciplinary Digital Publishing Institute}},
  issn = {2306-5338},
  doi = {10.3390/hydrology10030067},
  urldate = {2023-03-16},
  issue = {3}
}

                            
Doss-Gollin, J. & Keller, K. A Subjective Bayesian Framework for Synthesizing Deep Uncertainties in Climate Risk Management. Earth’s Future (2023).
Read Online Preprint Code

Projections of nonstationary climate risks can vary considerably from one source to another, posing considerable communication and decision-analytical challenges. One such challenge is how to present trade-offs under deep uncertainty in a salient and interpretable manner. Some common approaches include analyzing a small subset of projections or treating all considered projections as equally likely. These approaches can underestimate risks, hide deep uncertainties, and are mostly silent on which assumptions drive decision-relevant outcomes. Here we introduce and demonstrate a transparent Bayesian framework for synthesizing deep uncertainties to inform climate risk management. The first step of this workflow is to generate an ensemble of simulations representing possible futures and analyze them through standard exploratory modeling techniques. Next, a small set of probability distributions representing subjective beliefs about the likelihood of possible futures is used to weight the scenarios. Finally, these weights are used to compute and characterize trade-offs, conduct robustness checks, and reveal implicit assumptions. We demonstrate the framework through a didactic case study analyzing how high to elevate a house to manage coastal flood risks.

                            @article{doss-gollin_subjective:2022,
  title = {A Subjective {{Bayesian}} Framework for Synthesizing Deep Uncertainties in Climate Risk Management},
  author = {Doss-Gollin, James and Keller, Klaus},
  date = {2023-01-03},
  journaltitle = {Earth's Future},
  volume = {11},
  number = {1},
  issn = {2328-4277},
  doi = {10.1029/2022EF003044},
  urldate = {2022-12-31},
  preprint = {https://doi.org/10.1002/essoar.10511798.4},
  repo = {https://github.com/jdossgollin/2022-elevation-robustness}
}

                            
Zhou, X., Duenas-Osorio, L., Doss-Gollin, J., Liu, L., Stadler, L. & Li, Q. Mesoscale Modeling of Distributed Water Systems Enables Policy Search. Water Resources Research (2023).
Read Online Preprint Code

It is widely acknowledged that distributed water systems (DWSs), which integrate distributed water supply and treatment with existing centralized infrastructure, can mitigate challenges to water security from extreme events, climate change, and aged infrastructure. However, it is unclear which are beneficial DWS configurations, i.e., where and at what scale to implement distributed water supply. We develop a mesoscale representation model that approximates DWSs with reduced backbone networks to enable efficient system emulation while preserving key physical realism. Moreover, system emulation allows us to build a multiobjective optimization model for computational policy search that addresses energy utilization and economic impacts. We demonstrate our models on a hypothetical DWS with distributed direct potable reuse (DPR) based on the City of Houston’s water and wastewater infrastructure. The backbone DWS with greater than link and node reductions achieves satisfactory approximation of global flows and water pressures, to enable configuration optimization analysis. Results from the optimization model reveal case-specific as well as general opportunities, constraints, and their interactions for DPR allocation. Implementing DPR can be beneficial in areas with high energy intensities of water distribution, considerable local water demands, and commensurate wastewater reuse capacities. The mesoscale modeling approach and the multiobjective optimization model developed in this study can serve as practical decision-support tools for stakeholders to search for alternative DWS options in urban settings.

                            @article{zhou_mesoscale:2022,
  title = {Mesoscale Modeling of Distributed Water Systems Enables Policy Search},
  author = {Zhou, Xiangnan and Duenas-Osorio, Leonardo and Doss-Gollin, James and Liu, Lu and Stadler, Lauren and Li, Qilin},
  date = {2023},
  journaltitle = {Water Resources Research},
  volume = {59},
  number = {5},
  issn = {1944-7973},
  doi = {10.1029/2022WR033758},
  urldate = {2023-05-02},
  open = {true},
  preprint = {http://www.essoar.org/doi/10.1002/essoar.10512641.1},
  repo = {https://github.com/Zhouxiaomu33/Mesoscale-water-distribution-network-modeling}
}

                            
Doss-Gollin, J., Farnham, D. J., Lall, U. & Modi, V. How Unprecedented Was the February 2021 Texas Cold Snap? Environmental Research Letters (2021).
Read Online Preprint Code

Winter storm Uri brought severe cold to the southern United States in February 2021, causing a cascading failure of interdependent systems in Texas where infrastructure was not adequately prepared for such cold. In particular, the failure of interconnected energy systems restricted electricity supply just as demand for heating spiked, leaving millions of Texans without heat or electricity, many for several days. This motivates the question: did historical storms suggest that such temperatures were known to occur, and if so with what frequency? We compute a temperature-based proxy for heating demand and use this metric to answer the question “what would the aggregate demand for heating have been had historic cold snaps occurred with today’s population?”. We find that local temperatures and the inferred demand for heating per capita across the region served by the Texas Interconnection were more severe during a storm in December 1989 than during February 2021, and that cold snaps in 1951 and 1983 were nearly as severe. Given anticipated population growth, future storms may lead to even greater infrastructure failures if adaptive investments are not made. Further, electricity system managers should prepare for trends in electrification of heating to drive peak annual loads on the Texas Interconnection during severe winter storms.

                            @article{doss-gollin_txtreme:2021,
  title = {How Unprecedented Was the {{February}} 2021 {{Texas}} Cold Snap?},
  author = {Doss-Gollin, James and Farnham, David J. and Lall, Upmanu and Modi, Vijay},
  date = {2021-06-08},
  journaltitle = {Environmental Research Letters},
  shortjournal = {Environ. Res. Lett.},
  issn = {1748-9326},
  doi = {10.1088/1748-9326/ac0278},
  urldate = {2021-05-18},
  open = {true},
  preprint = {https://eartharxiv.org/repository/view/2122/},
  repo = {https://github.com/jdossgollin/2021-TXtreme}
}

                            
Doss-Gollin, J., Farnham, D. J., Ho, M. & Lall, U. Adaptation over Fatalism: Leveraging High-Impact Climate Disasters to Boost Societal Resilience. Journal of Water Resources Planning and Management (2020).
Read Online

The property damaged and the lives disrupted by recent hurricanes, floods, droughts, and water quality violations highlight the inadequacy of water infrastructure in the United States and around the world. Decisions about managing these infrastructure systems are strongly informed by societal perceptions of risk, which in turn are shaped through narratives of high-impact events in academic, governmental, commercial, and popular media. In recent years, post hoc analyses of high-impact water and climate disasters have increasingly focused on the role of anthropogenic climate change (ACC). This is a welcome development that helps to build support for much-needed mitigation of global greenhouse gas emissions and pushes companies, governments, and aid agencies to prepare for a changing environment. Yet climate impacts require a confluence of physical hazards and societal vulnerabilities, and so narratives centered only on the role of ACC can neglect the aging infrastructure, increasing development with exposure to climate risks, and inadequate maintenance that set the stage for meteorological and hydrological events to become humanitarian disasters. The fatalistic narratives that emerge, which often imply that because an event was exacerbated by climate change its consequences could not have been averted, discourage adaptive planning.

                            @article{doss-gollin_fatalism:2020,
  title = {Adaptation over Fatalism: Leveraging High-Impact Climate Disasters to Boost Societal Resilience},
  author = {Doss-Gollin, James and Farnham, David J. and Ho, Michelle and Lall, Upmanu},
  date = {2020-04-01},
  journaltitle = {Journal of Water Resources Planning and Management},
  shortjournal = {Journal of Water Resources Planning and Management},
  volume = {146},
  number = {4},
  doi = {10.1061/(asce)wr.1943-5452.0001190},
  urldate = {2020-01-29},
  open = {true}
}

                            
Doss-Gollin, J., Farnham, D. J., Steinschneider, S. & Lall, U. Robust Adaptation to Multiscale Climate Variability. Earth’s Future 734–747 (2019).
Read Online Code

The assessment and implementation of structural or financial instruments for climate risk mitigation requires projections of future climate risk over the operational life of each proposed instrument. A point often neglected in the climate adaptation literature is that the physical sources of predictability differ between projects with long and short planning periods: while historical and paleo climate records emphasize modes of variability, anthropogenic climate change is expected to alter their occurrence at longer time scales. In this paper we present a set of stylized experiments to assess the uncertainties and biases involved in estimating future climate risk over a finite future period, given a limited observational record. These experiments consider both quasi-periodic and secular change for the underlying risk, as well as statistical models for estimating this risk from an N-year historical record. The uncertainty of IPCC-like future scenarios is considered through an equivalent sample size N. The relative importance of estimating the short- or long-term risk extremes depends on the investment life M. Shorter design lives are preferred for situations where inter-annual to decadal variability can be successfully identified and predicted, suggesting the importance of sequential investment strategies for adaptation.

                            @article{doss-gollin_robustadaptation:2019,
  title = {Robust Adaptation to Multiscale Climate Variability},
  author = {Doss-Gollin, James and Farnham, David J. and Steinschneider, Scott and Lall, Upmanu},
  date = {2019-06-07},
  journaltitle = {Earth's Future},
  volume = {7},
  number = {7},
  pages = {734--747},
  issn = {2328-4277},
  doi = {10.1029/2019ef001154},
  urldate = {2019-06-09},
  open = {true},
  repo = {https://github.com/jdossgollin/2018-robust-adaptation-cyclical-risk}
}

                            
Rözer, V., Kreibich, H., Schröter, K., Müller, M., Sairam, N., Doss-Gollin, J., Lall, U. & Merz, B. Probabilistic Models Significantly Reduce Uncertainty in Hurricane Harvey Pluvial Flood Loss Estimates. Earth’s Future (2019).
Read Online

Pluvial flood risk is mostly excluded in urban flood risk assessment. However, the risk of pluvial flooding is a growing challenge with a projected increase of extreme rainstorms compounding with an ongoing global urbanization. Considered as a flood type with minimal impacts when rainfall rates exceed the capacity of urban drainage systems, the aftermath of rainfall-triggered flooding during Hurricane Harvey and other events show the urgent need to assess the risk of pluvial flooding. Due to the local extent and small scale variations, the quantification of pluvial flood risk requires risk assessments on high spatial resolutions. While flood hazard and exposure information is becoming increasingly accurate, the estimation of losses is still a poorly understood component of pluvial flood risk quantification. We use a new probabilistic multi-variable modeling approach to estimate pluvial flood losses of individual buildings, explicitly accounting for the associated uncertainties. Except for the water depth as the common most important predictor, we identified the drivers for having loss or not and for the degree of loss to be different. Applying this approach to estimate and validate building structure losses during Hurricane Harvey using a property level data set, we find that the reliability and dispersion of predictive loss distributions vary widely depending on the model and aggregation level of property level loss estimates. Our results show that the use of multi-variable zero-inflated beta models reduce the 90% prediction intervals for Hurricane Harvey building structure loss estimates on average by 78% (totalling US$ 3.8 billion) compared to commonly used models.

                            @article{rozer_lossestimates:2019,
  title = {Probabilistic Models Significantly Reduce Uncertainty in {{Hurricane Harvey}} Pluvial Flood Loss Estimates},
  author = {R\"ozer, Viktor and Kreibich, Heidi and Schr\"oter, Kai and M\"uller, Meike and Sairam, Nivedita and Doss-Gollin, James and Lall, Upmanu and Merz, Bruno},
  date = {2019},
  journaltitle = {Earth's Future},
  volume = {7},
  number = {4},
  issn = {2328-4277},
  doi = {10.1029/2018ef001074},
  urldate = {2019-03-28},
  open = {true}
}

                            
Doss-Gollin, J., Muñoz, Á. G., Mason, S. J. & Pastén, M. Heavy Rainfall in Paraguay during the 2015-2016 Austral Summer: Causes and Sub-Seasonal-to-Seasonal Predictive Skill. Journal of Climate 6669–6685 (2018).
Read Online Preprint Code

During the austral summer 2015/16, severe flooding displaced over 170 000 people on the Paraguay River system in Paraguay, Argentina, and southern Brazil. These floods were driven by repeated heavy rainfall events in the lower Paraguay River basin. Alternating sequences of enhanced moisture inflow from the South American low-level jet and local convergence associated with baroclinic systems were conducive to mesoscale convective activity and enhanced precipitation. These circulation patterns were favored by cross-time-scale interactions of a very strong El Niño event, an unusually persistent Madden–Julian oscillation in phases 4 and 5, and the presence of a dipole SST anomaly in the central southern Atlantic Ocean. The simultaneous use of seasonal and subseasonal heavy rainfall predictions could have provided decision-makers with useful information about the start of these flooding events from two to four weeks in advance. Probabilistic seasonal forecasts available at the beginning of November successfully indicated heightened probability of heavy rainfall (90th percentile) over southern Paraguay and Brazil for December–February. Raw subseasonal forecasts of heavy rainfall exhibited limited skill at lead times beyond the first two predicted weeks, but a model output statistics approach involving principal component regression substantially improved the spatial distribution of skill for week 3 relative to other methods tested, including extended logistic regressions. A continuous monitoring of climate drivers impacting rainfall in the region, and the use of statistically corrected heavy precipitation seasonal and subseasonal forecasts, may help improve flood preparedness in this and other regions.

                            @article{doss-gollin_pyfloods:2018,
  title = {Heavy Rainfall in {{Paraguay}} during the 2015-2016 Austral Summer: Causes and Sub-Seasonal-to-Seasonal Predictive Skill},
  author = {Doss-Gollin, James and Mu\~noz, \'Angel G and Mason, Simon J and Past\'en, Max},
  date = {2018-09-01},
  journaltitle = {Journal of Climate},
  volume = {31},
  number = {17},
  pages = {6669--6685},
  doi = {10.1175/jcli-d-17-0805.1},
  open = {true},
  preprint = {https://eartharxiv.org/gzj8n/},
  repo = {https://github.com/jdossgollin/2018-paraguay-floods}
}

                            
Farnham, D. J., Doss-Gollin, J. & Lall, U. Regional Extreme Precipitation Events: Robust Inference from Credibly Simulated GCM Variables. Water Resources Research (2018).
Read Online Code

General circulation models (GCMs) have been demonstrated to produce estimates of precipitation, including the frequency of extreme precipitation, with substantial bias and uncertainty relative to their representation of other fields. Thus, while theory predicts changes in the hydrologic cycle under anthropogenic warming, there is generally low confidence in future projections of extreme precipitation frequency for specific river basins. In this paper, we explore whether a GCM simulates large-scale atmospheric circulation indices that are associated with regional extreme precipitation (REP) days more accurately than it simulates REP days themselves, and thus whether conditional simulation of the precipitation events based on the circulation indices may improve the simulation of REP events. We show that a coupled Geophysical Fluid Dynamics Laboratory GCM simulates too many springtime REP days in the Ohio River Basin in historical (1950–2005) simulations. The GCM, however, does credibly simulate the distributional and persistence properties of several indices (which represent the large-scale atmospheric pressure features, local atmospheric moisture content, and local vertical velocity) that are shown to modulate the likelihood of REP occurrence in the reanalysis/observational record. We show that simulation of REP events based on the GCM-based atmospheric indices greatly reduces the bias of GCM REP frequency relative to the observed record. The simulation is conducted via a Bayesian regression model by imposing the empirical relationship between observed REP occurrence and the reanalysis-based atmospheric indices. Application of this model to future (2006–2100) representative concentration pathway 8.5 scenario suggests an increasing trend in springtime REP incidence in the study region. The proposed approach of simulating precipitation events of interest, particularly those poorly represented in GCMs, with a statistical model based on climate indices that are reasonably simulated by GCMs could be applied to subseasonal to seasonal forecasts as well as future projections.

                            @article{farnham_orbrep:2018,
  title = {Regional Extreme Precipitation Events: Robust Inference from Credibly Simulated {{GCM}} Variables},
  author = {Farnham, David J and Doss-Gollin, James and Lall, Upmanu},
  date = {2018},
  journaltitle = {Water Resources Research},
  volume = {54},
  number = {6},
  doi = {10.1002/2017wr021318},
  open = {true},
  repo = {https://github.com/d-farnham/ORB\_Paper/}
}

                            
Doss-Gollin, J., Souza Filho, F. de A. de & Silva, F. O. E. da. Analytic Modeling of Rainwater Harvesting in the Brazilian Semiarid Northeast. Journal of the American Water Resources Association 129–137 (2015).
Read Online Code

During the past two decades, government efforts to provide water access to rural communities in Brazil’s semiarid Northeast region have focused on building systems to capture and store rainwater, most importantly through the One Million Cisterns Program (P1MC). This article presents an analytic model based on daily precipitation data to evaluate the sustainability of rainwater capture. Application of this model to analysis of the P1MC reveals the heterogeneous climate in this region causes large spatial variability in the effectiveness of this program. In addition, the size of the area of capture, the run-off coefficient of the roofs, and the amount of first-flush diversion also have important effects. This analysis demonstrates while rainwater capture can offer sufficient water for drinking, as a stand-alone solution it cannot meet P1MC objectives of guaranteeing sustainable and universal access to water for drinking, cooking, and basic hygiene in all regions and years.

                            @article{doss-gollin_rwh:2015,
  title = {Analytic Modeling of Rainwater Harvesting in the {{Brazilian Semiarid Northeast}}},
  author = {Doss-Gollin, James and de Souza Filho, Francisco de Assis and da Silva, Francisco Osny En\'eas},
  date = {2015-12},
  journaltitle = {Journal of the American Water Resources Association},
  shortjournal = {JAWRA},
  volume = {52},
  number = {1},
  pages = {129--137},
  doi = {10.1111/1752-1688.12376},
  repo = {https://github.com/jdossgollin/2014-matlab-cisternas-brasil}
}

                            



Conference papers and presentations

Amonkar, Y. V., Doss-Gollin, J., Farnham, D. J., Modi, V. & Lall, U. Changing Climate, Peak Demand and Load Factors across the Contiguous United States. in (AGU, 2022).
Read Online

Heat waves (e.g., California in July of 2018) and cold spells (e.g., Texas in F...

                            @inproceedings{amonkar_agu:2022,
  title = {Changing Climate, Peak Demand and Load Factors across the Contiguous {{United States}}},
  author = {Amonkar, Yash Vijay and Doss-Gollin, James and Farnham, David J. and Modi, Vijay and Lall, Upmanu},
  date = {2022-12-15},
  publisher = {{AGU}},
  url = {https://agu.confex.com/agu/fm22/meetingapp.cgi/Paper/1176262},
  urldate = {2023-01-05},
  eventtitle = {Fall {{Meeting}} 2022}
}

                            
Lu, Y., Lee, B. S. & Doss-Gollin, J. Nonstationary GEV with Hierarchical Spatial Pooling: A Spatiotemporal Bayesian Framework for Nonstationary Extreme Precipitation Frequency Analysis in the Gulf Coast. in (AGU, 2022).
Read Online

Estimates of precipitation exceedance probabilities are widely used in engineer...

                            @inproceedings{lu_agu:2022,
  title = {Nonstationary {{GEV}} with Hierarchical Spatial Pooling: A Spatiotemporal {{Bayesian}} Framework for Nonstationary Extreme Precipitation Frequency Analysis in the {{Gulf Coast}}},
  author = {Lu, Yuchen and Lee, Benjamin Seiyon and Doss-Gollin, James},
  date = {2022-12-15},
  publisher = {{AGU}},
  url = {https://agu.confex.com/agu/fm22/meetingapp.cgi/Paper/1136415},
  urldate = {2023-01-05},
  eventtitle = {Fall {{Meeting}} 2022}
}

                            
Murphy, K., Dee, S., Munoz, S. E., Dunne, K., O’Donnell, M. & Doss-Gollin, J. The Mississippi River’s Hydrologic Response to Natural vs. Anthropogenic Forcing from the Last Millennium through the 21st Century. in (AGU, 2022).
Read Online

The Mississippi River basin generates billions of dollars each year through man...

                            @inproceedings{murphy_agu:2022,
  title = {The {{Mississippi River}}'s {{Hydrologic Response}} to {{Natural}} vs. {{Anthropogenic Forcing}} from the {{Last Millennium}} through the 21st {{Century}}},
  author = {Murphy, Kelsey and Dee, Sylvia and Munoz, Samuel E. and Dunne, Kieran and O'Donnell, Michelle and Doss-Gollin, James},
  date = {2022-12-15},
  publisher = {{AGU}},
  url = {https://agu.confex.com/agu/fm22/meetingapp.cgi/Paper/1095010},
  urldate = {2023-01-05},
  eventtitle = {Fall {{Meeting}} 2022}
}

                            
O’Donnell, M., Doss-Gollin, J., Dee, S. & Munoz, S. E. Validation of Community Earth System Model Hydrologic Variables Over the Mississippi River System To Understand Long Term Hydrometerologic Changes. in (AGU, 2022).
Read Online

The Mississippi River is an economic artery of the United States, and flooding ...

                            @inproceedings{odonnell_agu:2022,
  title = {Validation of {{Community Earth System Model Hydrologic Variables Over}} the {{Mississippi River System To Understand Long Term Hydrometerologic Changes}}},
  author = {O'Donnell, Michelle and Doss-Gollin, James and Dee, Sylvia and Munoz, Samuel E.},
  date = {2022-12-15},
  publisher = {{AGU}},
  url = {https://agu.confex.com/agu/fm22/meetingapp.cgi/Paper/1111978},
  urldate = {2023-01-05},
  eventtitle = {Fall {{Meeting}} 2022}
}

                            
Dee, S., Dunne, K., Munoz, S. E., Luo, X., Murphy, K. & Doss-Gollin, J. Past, Present, and Future Hydroclimate across the Mississippi River Basin and Its Tributaries: Insights from Integrated Paleoclimate Data Analysis. in (AGU, 2022).
Read Online

The Mississippi River is the largest commercial waterway in North America and o...

                            @inproceedings{dee_agu:2022,
  title = {Past, Present, and Future Hydroclimate across the {{Mississippi River Basin}} and Its Tributaries: Insights from Integrated Paleoclimate Data Analysis},
  author = {Dee, Sylvia and Dunne, Kieran and Munoz, Samuel E. and Luo, Xinyue and Murphy, Kelsey and Doss-Gollin, James},
  date = {2022-12-14},
  publisher = {{AGU}},
  url = {https://agu.confex.com/agu/fm22/meetingapp.cgi/Paper/1068514},
  urldate = {2023-01-05},
  eventtitle = {Fall {{Meeting}} 2022}
}

                            
Doss-Gollin, J., Lamontagne, J. & Lall, U. Near-Term Predictability Lowers Long-Term Adaptation Costs. in (AGU, 2022).
Read Online

Managing climate risks involves making decisions in the face of deep and dynami...

                            @inproceedings{doss-gollin_agu:2022,
  title = {Near-Term Predictability Lowers Long-Term Adaptation Costs},
  author = {Doss-Gollin, James and Lamontagne, Jonathan and Lall, Upmanu},
  date = {2022-12-14},
  publisher = {{AGU}},
  url = {https://agu.confex.com/agu/fm22/meetingapp.cgi/Paper/1153913},
  urldate = {2023-01-05},
  eventtitle = {Fall {{Meeting}} 2022}
}

                            
Kazadi, A. N., Doss-Gollin, J., Sebastian, A. & Silva, A. Flood Prediction with Graph Neural Networks. in Climate Change AI (Climate Change AI, 2022).
Read Online Code

Climate Change AI - NeurIPS 2022 Accepted Work

                            @inproceedings{kazadi_neurips:2022,
  title = {Flood {{Prediction}} with {{Graph Neural Networks}}},
  booktitle = {Climate {{Change AI}}},
  author = {Kazadi, Arnold N. and Doss-Gollin, James and Sebastian, Antonia and Silva, Arlei},
  date = {2022-12-09},
  publisher = {{Climate Change AI}},
  url = {https://www.climatechange.ai/papers/neurips2022/75},
  urldate = {2023-01-10},
  eventtitle = {{{NeurIPS}} 2022 {{Workshop}} on {{Tackling Climate Change}} with {{Machine Learning}}},
  repo = {https://github.com/kanz76/FloodGNN}
}

                            
Lall, U., Amonkar, Y. V., Farnham, D. J., Modi, V. & Doss-Gollin, J. The Risks of Energy Shortfalls Considering Temperature Extremes, Wind and Solar Energy for the Texas Energy Grid Using a Novel Space-Time Simulation Model. in (AGU, 2021).
Read Online

The February 2021 Texas Freeze highlighted the vulnerability of energy systems and their co-dependent infrastructure systems on climatic factors. As Texas continues to be one of the leaders in the adoption of renewable wind and solar energy, the importance of understanding the joint dependence of the availability of these resources, and of the climate sensitive demand associated with heating and cooling becomes critical. We present a novel space-time simulator based on a generalized k-nearest neighbor method that can generate spatially distributed daily time step simulations of wind power, solar radiation and cooling (CDD) and heating (HDD) degree days. The simulations preserve the cross-field dependence in space and across times in our applications to a 40 year long historical climate re-analysis data from Texas, including the spatial structure of the principal components of the data and their associated temporal spectra. We use the simulations to identify annual maxima of HDD and CDD for different block lengths (e.g., 1, 3, 7, and 14 days) over the entire ERCOT and identify the corresponding available wind and solar resource also over ERCOT. These are then used to identify the joint probability distributions of climate sensitive energy supply and demand, and their associated uncertainty. The estimated multivariate return periods can be used to inform reliable system design. A diagnosis of the atmospheric circulation parameters that lead to the extremes was also conducted for physical insights as to the mechanisms.

                            @inproceedings{lall_agu:2021,
  title = {The Risks of Energy Shortfalls Considering Temperature Extremes, Wind and Solar Energy for the {{Texas}} Energy Grid Using a Novel Space-Time Simulation Model},
  author = {Lall, Upmanu and Amonkar, Yash Vijay and Farnham, David J and Modi, Vijay and Doss-Gollin, James},
  date = {2021-12-16},
  publisher = {{AGU}},
  location = {{New Orleans, LA}},
  url = {https://agu.confex.com/agu/fm21/meetingapp.cgi/Home/0},
  urldate = {2021-12-15},
  eventtitle = {Fall {{Meeting}} 2021}
}

                            
Zhou, X., Duenas-Osorio, L., Liu, L., Stadler, L., Doss-Gollin, J., Getachew, B. & Li, Q. Infrastructure System for Climate Change Adaption: A Case Study in the City of Lumberton, NC. in (AGU, 2021).
Read Online

Ensuring the reliable distribution of safe drinking water and proper disposal of wastewater is critical to the well-being of modern society. Water treatment plants (WTPs) and wastewater treatment plants (WWTPs) tend to be located near large water bodies for cost-effective pumping of raw water and discharging of sewage downstream. Additionally, most WWTPs are built in low elevation areas to take advantage of gravity flows. Many WTPs and WWTPs are increasingly vulnerable to extreme precipitation events that occur more frequently due to global climate change. Hybrid systems that combine the centralized infrastructure and distributed wastewater treatment units with direct potable reuse (DPR) are an adaptation option for utilities. We investigate the benefit of such hybrid systems in terms of improving resilience to extreme precipitation events with a small city in the U.S., the City of Lumberton, North Carolina. Lumberton was hit by Hurricane Matthew in 2016 and Hurricane Florence in 2018 with different extents of water and wastewater service failure. We build a quantitative model for the water system of Lumberton that enables many-query analysis. We examine the performance of a hybrid system, which has three distributed DPR sites at three existing tank stations that are located either outside 500-year flood hazard zones or in 500-year flood hazard zones with reduced risk, against two hazard scenarios relative to the original system. The first hazard scenario is the flooding of the WTP and the pump station, which reside in the 100-year flood hazard zone. The second is a biological invasion (Escherichia coli) from sewer overflow. We show that the hybrid system has a higher capacity to withstand flooding under certain levels. It can maintain reliable water supply for more than 72 hours if the DPR quantity is maximized, while the original system can only provide less than 24 hours of supply from tanks’ storage. Moreover, the hybrid system contains much-retained impacted areas in case of contaminant invasions as the distributed DPR sites form relatively independent pressure zones. We demonstrate that this modeling framework can provide decision-makers with quantitative data for what-if scenarios with new adaptation alternatives and their synergies (e.g., integrated water and wastewater systems, expanded power backup).

                            @inproceedings{zhou_agu:2021,
  title = {Infrastructure System for Climate Change Adaption: A Case Study in the {{City}} of {{Lumberton}}, {{NC}}},
  author = {Zhou, Xiangnan and Duenas-Osorio, Leonardo and Liu, Lu and Stadler, Lauren and Doss-Gollin, James and Getachew, Bezawit and Li, Qilin},
  date = {2021-12-15},
  publisher = {{AGU}},
  url = {https://agu.confex.com/agu/fm21/meetingapp.cgi/Paper/976152},
  urldate = {2021-12-15},
  eventtitle = {Fall {{Meeting}} 2021}
}

                            
Doss-Gollin, J. & Keller, K. What Scenario Should We Design for? Insights from Home Elevation for the Multiple PDF Problem. in (AGU, 2021).
Read Online

                            @inproceedings{doss-gollin_aguelevation:2021,
  title = {What Scenario Should We Design for? {{Insights}} from Home Elevation for the Multiple {{PDF}} Problem},
  author = {Doss-Gollin, James and Keller, Klaus},
  date = {2021-12-14},
  publisher = {{AGU}},
  url = {agu2021fallmeeting-agu.ipostersessions.com/Default.aspx?s=D2-0D-CF-34-C4-B0-81-F3-7F-89-98-D7-10-3D-BB-01},
  eventtitle = {Fall {{Meeting}} 2021}
}

                            
Doss-Gollin, J., Farnham, D. J., Lall, U. & Modi, V. How Unprecedented Was the February 2021 Texas Cold Snap? in (AGU, 2021).
Read Online

Winter storm Uri brought severe cold to the southern United States in February ...

                            @inproceedings{doss-gollin_agutxtreme:2021,
  title = {How Unprecedented Was the {{February}} 2021 {{Texas}} Cold Snap?},
  author = {Doss-Gollin, James and Farnham, David J. and Lall, Upmanu and Modi, Vijay},
  date = {2021-12-13},
  publisher = {{AGU}},
  url = {https://agu.confex.com/agu/fm21/meetingapp.cgi/Paper/796322},
  urldate = {2021-12-15},
  eventtitle = {{{AGU Fall Meeting}} 2021}
}

                            
Geldner, N., Doss-Gollin, J., Keller, K. & Johnson, D. R. Characterization of the Equity-Efficiency Tradeoff in Targeted Residential Coastal Protection Projects. in 2021 Annual Meeting of the Society for Risk Analysis (2021).
Read Online

                            @inproceedings{geldner_societyriskanalysis:2021,
  title = {Characterization of the Equity-Efficiency Tradeoff in Targeted Residential Coastal Protection Projects},
  booktitle = {2021 {{Annual Meeting}} of the {{Society}} for {{Risk Analysis}}},
  author = {Geldner, Nathan and Doss-Gollin, James and Keller, Klaus and Johnson, David R.},
  date = {2021-12-09},
  location = {{Virtual}},
  url = {https://sra2021.conferencespot.org/event-data/pdf/catalyst_activity_25852}
}

                            
Lall, U., Arumugam, S., Cioffi, F., Devineni, N., Doss-Gollin, J., Kwon, H.-H. & Rajagopalan, B. America’s Water: Multiscale Forecasting and Innovation in Infrastructure Design & Management Instruments Is Critical for Climate Adaptation. in (AGU, 2020).
Read Online

Over the last two decades, many investigators have developed seasonal climate f...

                            @inproceedings{lall_agu20:2020,
  title = {America's Water: Multiscale Forecasting and Innovation in Infrastructure Design \& Management Instruments Is Critical for Climate Adaptation},
  author = {Lall, Upmanu and Arumugam, Sankar and Cioffi, Francesco and Devineni, Naresh and Doss-Gollin, James and Kwon, Hyun-Han and Rajagopalan, Balaji},
  date = {2020-12-15},
  publisher = {{AGU}},
  url = {https://agu.confex.com/agu/fm20/meetingapp.cgi/Paper/681899},
  urldate = {2021-09-29},
  eventtitle = {Fall {{Meeting}} 2020}
}

                            
Amonkar, Y. V., Doss-Gollin, J. & Lall, U. Preserving Long-Term Variability in Simulation of Multisite Streamflow Extremes. in (AGU, 2019).
Read Online

The prediction and simulation of streamflow extremes across a river basin has s...

                            @inproceedings{amonkar_agu:2019,
  title = {Preserving Long-Term Variability in Simulation of Multisite Streamflow Extremes},
  author = {Amonkar, Yash Vijay and Doss-Gollin, James and Lall, Upmanu},
  date = {2019-12-09},
  publisher = {{AGU}},
  doi = {10.6084/m9.figshare.11444238.v1},
  urldate = {2019-12-18},
  eventtitle = {Fall {{Meeting}} 2019},
  open = {true}
}

                            
Doss-Gollin, J., Lall, U. & Lamontagne, J. Towards Adaptive Resilience: Managing Uncertainties and Exploiting Predictability across Timescales. in (AGU, 2019).
Read Online

AGU Fall Meeting 2019, Abstract H11G-07. Presented 9 December 2019.

                            @inproceedings{doss-gollin_agu:2019,
  title = {Towards Adaptive Resilience: Managing Uncertainties and Exploiting Predictability across Timescales},
  author = {Doss-Gollin, James and Lall, Upmanu and Lamontagne, Jonathan},
  date = {2019-12-09},
  publisher = {{AGU}},
  doi = {10.6084/m9.figshare.11397936.v1},
  urldate = {2019-12-18},
  eventtitle = {Fall {{Meeting}} 2019},
  open = {true}
}

                            
Doss-Gollin, J., Farnham, D. J., Steinschneider, S. & Lall, U. Robust Adaptation to Cyclical Climate Risk. in (AGU, 2018).
Read Online

                            @inproceedings{doss-gollin:2018,
  title = {Robust Adaptation to Cyclical Climate Risk},
  author = {Doss-Gollin, James and Farnham, David J and Steinschneider, Scott and Lall, Upmanu},
  date = {2018-12-14},
  publisher = {{AGU}},
  doi = {10.13140/rg.2.2.28447.20649},
  eventtitle = {Fall {{Meeting}} 2018},
  open = {true}
}

                            
Doss-Gollin, J., Farnham, D. J. & Lall, U. Designing and Operating Infrastructure for Nonstationary Flood Risk Management. in (AGU, 2017).
Read Online

                            @inproceedings{doss-gollin_agu:2017,
  title = {Designing and Operating Infrastructure for Nonstationary Flood Risk Management},
  author = {Doss-Gollin, James and Farnham, David J and Lall, Upmanu},
  date = {2017-12},
  publisher = {{AGU}},
  doi = {10.13140/rg.2.2.16110.46403},
  eventtitle = {2017 {{Fall Meeting}}},
  open = {true}
}

                            
Doss-Gollin, J., Muñoz, Á. G., Mason, S. J. & Pastén, M. Causes and Model Skill of the Persistent Intense Rainfall and Flooding in Paraguay during the Austral Summer 2015-2016. in (AGU, 2017).
Read Online

                            @inproceedings{DossGollin:2017et,
  title = {Causes and Model Skill of the Persistent Intense Rainfall and Flooding in {{Paraguay}} during the Austral Summer 2015-2016},
  author = {Doss-Gollin, James and Mu\~noz, \'Angel G and Mason, Simon J and Past\'en, Max},
  date = {2017-12},
  publisher = {{AGU}},
  doi = {10.13140/rg.2.2.20146.30406},
  eventtitle = {2017 {{Fall Meeting}}},
  open = {true}
}

                            
Faranda, D., Messori, G., Doss-Gollin, J., Farnham, D. J., Lall, U. & Yiou, P. Dynamics and Thermodynamics of Weather Extremes: A Dynamical Systems Approach. in (AGU, 2017).

                            @inproceedings{Faranda:2017vi,
  title = {Dynamics and Thermodynamics of Weather Extremes: A Dynamical Systems Approach},
  author = {Faranda, Davide and Messori, Gabriele and Doss-Gollin, James and Farnham, David J and Lall, Upmanu and Yiou, Pascal},
  date = {2017-12},
  publisher = {{AGU}},
  eventtitle = {2017 {{Fall Meeting}}}
}

                            
Rözer, V., Kreibich, H., Schröter, K., Doss-Gollin, J., Lall, U. & Merz, B. BN-FLEMOps Pluvial - A Probabilistic Multi-Variable Loss Estimation Model for Pluvial Floods. in (AGU, 2017).

                            @inproceedings{Roezer:2017wma,
  title = {{{BN-FLEMOps}} Pluvial - {{A}} Probabilistic Multi-Variable Loss Estimation Model for Pluvial Floods},
  author = {R\"ozer, Viktor and Kreibich, Heidi and Schr\"oter, Kai and Doss-Gollin, James and Lall, Upmanu and Merz, Bruno},
  date = {2017-12},
  publisher = {{AGU}},
  eventtitle = {2017 {{Fall Meeting}}}
}

                            
Farnham, D. J., Doss-Gollin, J. & Lall, U. Space-Time Characteristics and Statistical Predictability of Extreme Daily Precipitation Events in the Ohio River Basin. in (AGU, 2016).

In this study we identify the atmospheric conditions that precede and accompany regional extreme precipitation events with the potential to cause flooding. We begin by identifying a coherent space-time structure in the record of extreme precipitation within the Ohio River \ldots

                            @inproceedings{Farnham:2016tw,
  title = {Space-Time Characteristics and Statistical Predictability of Extreme Daily Precipitation Events in the {{Ohio River Basin}}},
  author = {Farnham, David J and Doss-Gollin, James and Lall, Upmanu},
  date = {2016-12},
  publisher = {{AGU}},
  eventtitle = {2016 {{Fall Meeting}}}
}

                            
Doss-Gollin, J., Farnham, D. J. & Lall, U. Global-Local Interactions Modulate Tropical Moisture Exports to the Ohio River Basin. in (AGU, 2016).
Read Online

Regional-scale extreme rainfall and flooding are temporally and spatially associated with the occurrence of tropical moisture exports (TMEs) in the Ohio River Basin (ORB). TMEs are related to but not synonymous with atmospheric rivers, which refer to specific filiamentary organizational processes. TMEs to the ORB may be driven by strong, persistent ridging over the Eastern United States and troughing over the Central United States, creating favorable conditions for southerly flow and moisture transport from the Gulf of Mexico and Caribbean Sea. However, the strong inter-annual variation in TME activity over the ORB suggests dependence on global-scale features of the atmospheric circulation. We suggest that this synoptic dipole pattern may be viewed as the passage of one or more high-wavenumber, transient Rossby waves. We build a multi-level hierarchical Bayesian model in which the probability distribution of TME entering the ORB is a function of the phase and amplitude of the traveling waves. In turn, the joint distribution of the phase and amplitude of this wave is modulated by hemispheric-scale features of the atmospheric and oceanic circulation, and the amplitude and synchronization of quasi-stationary Rossby waves with wavenumber 1-4. Our approach bridges information about different features of the atmospheric circulation which inform the predictability of TME at multiple time scales and develops existing understanding of the atmospheric drivers of TMEs beyond existing composite and EOF studies.

                            @inproceedings{doss-gollin:2016,
  title = {Global-Local Interactions Modulate Tropical Moisture Exports to the {{Ohio River Basin}}},
  author = {Doss-Gollin, James and Farnham, David J and Lall, Upmanu},
  date = {2016},
  publisher = {{AGU}},
  doi = {10.13140/rg.2.2.36009.19044},
  eventtitle = {2016 {{Fall Meeting}}},
  open = {true}
}

                            
Spence, C. M., Brown, C. & Doss-Gollin, J. Exploiting Synoptic-Scale Climate Processes to Develop Nonstationary, Probabilistic Flood Hazard Projections. in (AGU, 2016).

Climate model projections are commonly used for water resources management and planning under nonstationarity, but they do not reliably reproduce intense short-term precipitation and are instead more skilled at broader spatial scales. To provide a credible estimate of flood trend that reflects climate uncertainty, we present a framework that exploits the connections between synoptic-scale oceanic and atmospheric patterns and local-scale flood-producing meteorological events to develop long-term flood hazard projections. We \ldots

                            @inproceedings{Spence:2016vz,
  title = {Exploiting Synoptic-Scale Climate Processes to Develop Nonstationary, Probabilistic Flood Hazard Projections},
  author = {Spence, Caitlin M and Brown, Casey and Doss-Gollin, James},
  date = {2016},
  publisher = {{AGU}},
  eventtitle = {2016 {{Fall Meeting}}}
}

                            
Farnham, D. J., Lall, U., Kwon, H.-H. & Doss-Gollin, J. Moisture Transport and Extreme Precipitation in Mid-Latitudes. in (AGU, 2015).

                            @inproceedings{Farnham:2015ue,
  title = {Moisture Transport and Extreme Precipitation in Mid-Latitudes},
  author = {Farnham, David J and Lall, Upmanu and Kwon, Hyun-Han and Doss-Gollin, James},
  date = {2015-12},
  publisher = {{AGU}},
  eventtitle = {2015 {{Fall Meeting}}}
}

                            
Araújo Júnior, L. M., Souza Filho, F. de A. de, Silva Silveira, C. da, Aragão Dias, T. & Doss-Gollin, J. Análise dos eventos de seca no Nordeste Setentrional Brasileiro com base no índice de precipitação normalizada. in XII Simpósio de Recursos Hídricos Do Nordeste (Associação Brasileira de Recursos Hídricos (ABRH), 2014).
Read Online

                            @inproceedings{AraujoJunior:2014kf,
  title = {An\'alise dos eventos de seca no Nordeste Setentrional Brasileiro com base no \'indice de precipita\c{c}\~ao normalizada},
  booktitle = {XII Simp\'osio de Recursos H\'idricos Do Nordeste},
  author = {Ara\'ujo J\'unior, Luiz Martins and de Souza Filho, Francisco de Assis and da Silva Silveira, Cleiton and Arag\~ao Dias, Tyhago and Doss-Gollin, James},
  date = {2014},
  publisher = {{Associa\c{c}\~ao Brasileira de Recursos H\'idricos (ABRH)}},
  location = {{Natal, Rio Grande do Norte, Brasil}},
  doi = {10.13140/rg.2.1.4610.7685},
  open = {true}
}

                            
Doss-Gollin, J., Souza Filho, F. de A. de & Silva, F. O. E. da. Considerações sobre a sustentabilidade hídrica de cisternas para captação de chuva no Semiárido Brasileiro. in XII Simpósio de Recursos Hídricos Do Nordeste (Associação Brasileira de Recursos Hídricos (ABRH), 2014).
Read Online

                            @inproceedings{DossGollin:2014hs,
  title = {Considera\c{c}\~oes sobre a sustentabilidade h\'idrica de cisternas para capta\c{c}\~ao de chuva no Semi\'arido Brasileiro},
  booktitle = {XII Simp\'osio de Recursos H\'idricos Do Nordeste},
  author = {Doss-Gollin, James and de Souza Filho, Francisco de Assis and da Silva, Francisco Osny En\'eas},
  date = {2014},
  publisher = {{Associa\c{c}\~ao Brasileira de Recursos H\'idricos (ABRH)}},
  location = {{Natal, Rio Grande do Norte, Brasil}},
  doi = {10.13140/rg.2.1.4086.4807},
  open = {true}
}