References 🎯

Abernathey, Ryan. 2024. An Introduction to Earth and Environmental Data Science. https://earth-env-data-science.github.io/intro.html.
Applegate, Patrick, and Klaus Keller. 2015. Risk Analysis in the Earth Sciences. Leanpub. https://leanpub.next/raes.
Bastani, Hamsa, Osbert Bastani, Alp Sungu, Haosen Ge, Özge Kabakcı, and Rei Mariman. 2025. “Generative AI Without Guardrails Can Harm Learning: Evidence from High School Mathematics.” Proceedings of the National Academy of Sciences 122 (26): e2422633122. https://doi.org/10.1073/pnas.2422633122.
Bishop, Christopher M., and Hugh Bishop. 2024. Deep Learning: Foundations and Concepts. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-45468-4.
Blitzstein, Joseph K., and Jessica Hwang. 2019. Introduction to Probability, Second Edition. 2nd Edition. Boca Raton: Chapman and Hall/CRC. http://probabilitybook.net.
Coles, Stuart. 2001. An Introduction to Statistical Modeling of Extreme Values. Springer Series in Statistics. London: Springer.
Cressie, Noel A. C., and Christopher K. Wikle. 2011. Statistics for Spatio-Temporal Data. Hoboken, N.J.: Wiley.
Downey, Allen B. 2021. Think Bayes. "O’Reilly Media, Inc.". https://allendowney.github.io/ThinkBayes2/.
Farnham, David J, James Doss-Gollin, and Upmanu Lall. 2018. “Regional Extreme Precipitation Events: Robust Inference from Credibly Simulated GCM Variables.” Water Resources Research 54 (6). https://doi.org/10.1002/2017wr021318.
Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. 2001. The Elements of Statistical Learning. Vol. 1. Springer series in statistics Springer, Berlin.
Gelman, Andrew. 2021. Regression and Other Stories. Analytical Methods for Social Research. Cambridge, United Kingdom ; Cambridge University Press.
Gelman, Andrew, John B Carlin, Hal S Stern, and Donald B Rubin. 2014. Bayesian Data Analysis. 3rd ed. Chapman & Hall/CRC Boca Raton, FL, USA.
Ghil, M, P Yiou, S Hallegatte, B D Malamud, P Naveau, A Soloviev, P Friederichs, et al. 2011. “Extreme Events: Dynamics, Statistics and Prediction.” Nonlinear Processes in Geophysics 18 (3): 295–350. https://doi.org/10/fvzxvv.
Helsel, Dennis R., Robert M. Hirsch, Karen R. Ryberg, Stacey A. Archfield, and Edward J. Gilroy. 2020. Statistical Methods in Water Resources. Techniques and Methods. U.S. Geological Survey. https://doi.org/10.3133/tm4A3.
Herman, Jon, and Will Usher. 2017. “SALib: An Open-Source Python Library for Sensitivity Analysis.” Journal of Open Source Software 2 (9): 97. https://doi.org/10.21105/joss.00097.
Jaynes, Edwin T. 2003. Probability Theory: The Logic of Science. New York, NY: Cambridge University Press.
Kosmyna, Nataliya, Eugene Hauptmann, Ye Tong Yuan, Jessica Situ, Xian-Hao Liao, Ashly Vivian Beresnitzky, Iris Braunstein, and Pattie Maes. 2025. “Your Brain on ChatGPT: Accumulation of Cognitive Debt When Using an AI Assistant for Essay Writing Task.” June 10, 2025. https://doi.org/10.48550/arXiv.2506.08872.
Lafferty, David C., and Ryan L. Sriver. 2023. “Downscaling and Bias-Correction Contribute Considerable Uncertainty to Local Climate Projections in CMIP6.” Npj Climate and Atmospheric Science 6 (1, 1): 1–13. https://doi.org/10.1038/s41612-023-00486-0.
Lanzante, John R, Keith W Dixon, Mary Jo Nath, Carolyn E Whitlock, and Dennis Adams-Smith. 2018. “Some Pitfalls in Statistical Downscaling of Future Climate.” Bulletin of the American Meteorological Society 99 (4): 791–803. https://doi.org/10.1175/bams-d-17-0046.1.
McElreath, Richard. 2020. Statistical Rethinking: A Bayesian Course with Examples in R and Stan. Second edition. Texts in Statistical Science Series. Boca Raton ; CRC Press, Taylor & Francis Group.
Merz, Bruno, Jeroen C J H Aerts, Karsten Arnbjerg-Nielsen, M Baldi, A Becker, A Bichet, Günter Blöschl, et al. 2014. “Floods and Climate: Emerging Perspectives for Flood Risk Assessment and Management.” Natural Hazards and Earth System Science 14 (7): 1921–42. https://doi.org/10/gb9nzm.
Mignan, Arnaud. 2024. Introduction to Catastrophe Risk Modelling: A Physics-based Approach. Cambridge: Cambridge University Press. https://doi.org/10.1017/9781009437370.
Mudelsee, Manfred. 2020. “Statistical Analysis of Climate Extremes / Manfred Mudelsee.” In Statistical Analysis of Climate Extremes. Cambridge, United Kingdom ; Cambridge University Press.
Naghettini, Mauro, ed. 2017. Fundamentals of Statistical Hydrology. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-43561-9.
Piironen, Juho, and Aki Vehtari. 2017. “Comparison of Bayesian Predictive Methods for Model Selection.” Statistics and Computing 27 (3): 711–35. https://doi.org/10.1007/s11222-016-9649-y.
Pyrcz, Michael J. 2024. Applied Machine Learning in Python: A Hands-on Guide with Code. https://geostatsguy.github.io/MachineLearningDemos_Book.
Rackauckas, Christopher, Yingbo Ma, Julius Martensen, Collin Warner, Kirill Zubov, Rohit Supekar, Dominic Skinner, Ali Ramadhan, and Alan Edelman. 2020. “Universal Differential Equations for Scientific Machine Learning.” 2020. https://doi.org/10.48550/ARXIV.2001.04385.
Saltelli, Andrea, Marco Ratto, Terry Andres, Francesca Campolongo, Jessica Cariboni, Debora Gatelli, Michaela Saisana, and Stefano Tarantola. 2008. Global Sensitivity Analysis: The Primer. John Wiley & Sons, Ltd. http://onlinelibrary.wiley.com/doi/abs/10.1002/9780470725184.ch1.
Thuerey, N., B. Holzschuh, P. Holl, G. Kohl, M. Lino, Q. Liu, P. Schnell, and F. Trost. 2024. Physics-Based Deep Learning. https://physicsbaseddeeplearning.org.