References đŻ
Abernathey, Ryan. 2024. An Introduction to
Earth and Environmental Data Science. https://earth-env-data-science.github.io/intro.html.
Applegate, Patrick, and Klaus Keller. 2015. Risk
Analysis in the Earth Sciences. Leanpub.
https://leanpub.next/raes.
Bastani, Hamsa, Osbert Bastani, Alp Sungu, Haosen Ge, Ăzge KabakcÄą, and
Rei Mariman. 2025. âGenerative AI Without Guardrails
Can Harm Learning: Evidence from High School
Mathematics.â Proceedings of the National Academy of
Sciences 122 (26): e2422633122. https://doi.org/10.1073/pnas.2422633122.
Bishop, Christopher M., and Hugh Bishop. 2024. Deep
Learning: Foundations and
Concepts. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-45468-4.
Blitzstein, Joseph K., and Jessica Hwang. 2019. Introduction to
Probability, Second Edition. 2nd Edition.
Boca Raton: Chapman and Hall/CRC. http://probabilitybook.net.
Coles, Stuart. 2001. An Introduction to Statistical Modeling of
Extreme Values. Springer Series in Statistics. London: Springer.
Cressie, Noel A. C., and Christopher K. Wikle. 2011. Statistics for
Spatio-Temporal Data. Hoboken, N.J.: Wiley.
Downey, Allen B. 2021. Think Bayes. "OâReilly
Media, Inc.". https://allendowney.github.io/ThinkBayes2/.
Farnham, David J, James Doss-Gollin, and Upmanu Lall. 2018.
âRegional Extreme Precipitation Events: Robust Inference from
Credibly Simulated GCM Variables.â Water
Resources Research 54 (6). https://doi.org/10.1002/2017wr021318.
Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. 2001. The
Elements of Statistical Learning. Vol. 1.
Springer series in statistics Springer, Berlin.
Gelman, Andrew. 2021. Regression and Other Stories. Analytical
Methods for Social Research. Cambridge, United Kingdom ; Cambridge
University Press.
Gelman, Andrew, John B Carlin, Hal S Stern, and Donald B Rubin. 2014.
Bayesian Data Analysis. 3rd ed. Chapman &
Hall/CRC Boca Raton, FL, USA.
Ghil, M, P Yiou, S Hallegatte, B D Malamud, P Naveau, A Soloviev, P
Friederichs, et al. 2011. âExtreme Events: Dynamics, Statistics
and Prediction.â Nonlinear Processes in Geophysics 18
(3): 295â350. https://doi.org/10/fvzxvv.
Helsel, Dennis R., Robert M. Hirsch, Karen R. Ryberg, Stacey A.
Archfield, and Edward J. Gilroy. 2020. Statistical Methods in Water
Resources. Techniques and Methods. U.S. Geological Survey.
https://doi.org/10.3133/tm4A3.
Herman, Jon, and Will Usher. 2017. âSALib:
An Open-Source Python Library for
Sensitivity Analysis.â Journal of Open Source
Software 2 (9): 97. https://doi.org/10.21105/joss.00097.
Jaynes, Edwin T. 2003. Probability Theory: The Logic of
Science. New York, NY: Cambridge University Press.
Kosmyna, Nataliya, Eugene Hauptmann, Ye Tong Yuan, Jessica Situ,
Xian-Hao Liao, Ashly Vivian Beresnitzky, Iris Braunstein, and Pattie
Maes. 2025. âYour Brain on ChatGPT:
Accumulation of Cognitive Debt When
Using an AI Assistant for Essay Writing
Task.â June 10, 2025. https://doi.org/10.48550/arXiv.2506.08872.
Lafferty, David C., and Ryan L. Sriver. 2023. âDownscaling and
Bias-Correction Contribute Considerable Uncertainty to Local Climate
Projections in CMIP6.â Npj Climate and
Atmospheric Science 6 (1, 1): 1â13. https://doi.org/10.1038/s41612-023-00486-0.
Lanzante, John R, Keith W Dixon, Mary Jo Nath, Carolyn E Whitlock, and
Dennis Adams-Smith. 2018. âSome Pitfalls in
Statistical Downscaling of Future
Climate.â Bulletin of the American Meteorological
Society 99 (4): 791â803. https://doi.org/10.1175/bams-d-17-0046.1.
McElreath, Richard. 2020. Statistical Rethinking: A
Bayesian Course with Examples in R and
Stan. Second edition. Texts in Statistical Science
Series. Boca Raton ; CRC Press, Taylor & Francis Group.
Merz, Bruno, Jeroen C J H Aerts, Karsten Arnbjerg-Nielsen, M Baldi, A
Becker, A Bichet, GĂźnter BlĂśschl, et al. 2014. âFloods and
Climate: Emerging Perspectives for Flood Risk Assessment and
Management.â Natural Hazards and Earth System Science 14
(7): 1921â42. https://doi.org/10/gb9nzm.
Mignan, Arnaud. 2024. Introduction to Catastrophe Risk
Modelling: A Physics-based
Approach. Cambridge: Cambridge University Press. https://doi.org/10.1017/9781009437370.
Mudelsee, Manfred. 2020. âStatistical Analysis of Climate Extremes
/ Manfred Mudelsee.â In Statistical Analysis of
Climate Extremes. Cambridge, United Kingdom ; Cambridge University
Press.
Naghettini, Mauro, ed. 2017. Fundamentals of Statistical
Hydrology. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-43561-9.
Piironen, Juho, and Aki Vehtari. 2017. âComparison of
Bayesian Predictive Methods for Model Selection.â
Statistics and Computing 27 (3): 711â35. https://doi.org/10.1007/s11222-016-9649-y.
Pyrcz, Michael J. 2024. Applied Machine Learning in
Python: A Hands-on Guide with
Code. https://geostatsguy.github.io/MachineLearningDemos_Book.
Rackauckas, Christopher, Yingbo Ma, Julius Martensen, Collin Warner,
Kirill Zubov, Rohit Supekar, Dominic Skinner, Ali Ramadhan, and Alan
Edelman. 2020. âUniversal Differential Equations for
Scientific Machine Learning.â 2020. https://doi.org/10.48550/ARXIV.2001.04385.
Saltelli, Andrea, Marco Ratto, Terry Andres, Francesca Campolongo,
Jessica Cariboni, Debora Gatelli, Michaela Saisana, and Stefano
Tarantola. 2008. Global Sensitivity Analysis: The Primer. John
Wiley & Sons, Ltd. http://onlinelibrary.wiley.com/doi/abs/10.1002/9780470725184.ch1.
Thuerey, N., B. Holzschuh, P. Holl, G. Kohl, M. Lino, Q. Liu, P.
Schnell, and F. Trost. 2024. Physics-Based Deep Learning. https://physicsbaseddeeplearning.org.